Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 62, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2288699

RESUMEN

Non-protein target drugs, especially RNA-based gene therapies for treating hereditary diseases, have been recognized worldwide. As cancer is an insurmountable challenge, no miracle drug is currently available. With the advancements in the field of biopharmaceuticals, research on cancer therapy has gradually focused on non-protein target-targeted drugs, especially RNA therapeutics, including oligonucleotide drugs and mRNA vaccines. This review mainly summarizes the clinical research progress in RNA therapeutics and highlights that appropriate target selection and optimized delivery vehicles are key factors in increasing the effectiveness of cancer treatment in vivo.


Asunto(s)
Neoplasias , Humanos , Preparaciones Farmacéuticas , Neoplasias/tratamiento farmacológico , ARN , Oligonucleótidos
2.
Cell Discov ; 9(1): 37, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2254818

RESUMEN

The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread around the world. Mutant strains of SARS-CoV-2 are constantly emerging. At present, Omicron variants have become mainstream. In this work, we carried out a systematic and comprehensive analysis of the reported spike protein antibodies, counting the epitopes and genotypes of these antibodies. We further comprehensively analyzed the impact of Omicron mutations on antibody epitopes and classified these antibodies according to their binding patterns. We found that the epitopes of the H-RBD class antibodies were significantly less affected by Omicron mutations than other classes. Binding and virus neutralization experiments showed that such antibodies could effectively inhibit the immune escape of Omicron. Cryo-EM results showed that this class of antibodies utilized a conserved mechanism to neutralize SARS-CoV-2. Our results greatly help us deeply understand the impact of Omicron mutations. Meanwhile, it also provides guidance and insights for developing Omicron antibodies and vaccines.

3.
Nat Metab ; 4(12): 1674-1683, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2160336

RESUMEN

Patients with COVID-19 frequently manifest adipose atrophy, weight loss and cachexia, which significantly contribute to poor quality of life and mortality1,2. Browning of white adipose tissue and activation of brown adipose tissue are effective processes for energy expenditure3-7; however, mechanistic and functional links between SARS-CoV-2 infection and adipose thermogenesis have not been studied. In this study, we provide experimental evidence that SARS-CoV-2 infection augments adipose browning and non-shivering thermogenesis (NST), which contributes to adipose atrophy and body weight loss. In mouse and hamster models, SARS-CoV-2 infection activates brown adipose tissue and instigates a browning or beige phenotype of white adipose tissues, including augmented NST. This browning phenotype was also observed in post-mortem adipose tissue of four patients who died of COVID-19. Mechanistically, high levels of vascular endothelial growth factor (VEGF) in the adipose tissue induces adipose browning through vasculature-adipocyte interaction. Inhibition of VEGF blocks COVID-19-induced adipose tissue browning and NST and partially prevents infection-induced body weight loss. Our data suggest that the browning of adipose tissues induced by COVID-19 can contribute to adipose tissue atrophy and weight loss observed during infection. Inhibition of VEGF signaling may represent an effective approach for preventing and treating COVID-19-associated weight loss.


Asunto(s)
COVID-19 , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Calidad de Vida , COVID-19/metabolismo , SARS-CoV-2 , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Pérdida de Peso , Mamíferos
4.
Vaccines (Basel) ; 10(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2090405

RESUMEN

Recombinant proteins are essential in the development of subunit vaccines. In the design of many recombinant proteins, polyhistidine residues are added to the N- or C-termini of target sequences to facilitate purification. However, whether the addition of tag residues influences the immunogenicity of proteins remains unknown. In this study, the tag-free SARS-CoV-2 RBD and His-tag SARS-CoV-2 RBD proteins were investigated to determine whether there were any differences in their receptor binding affinity and immunogenicity. The results showed that the tag-free RBD protein had a higher affinity for binding with hACE2 receptors than His-tag RBD proteins (EC50: 1.78 µM vs. 7.51 µM). On day 21 after primary immunization with the proteins, the serum ELISA titers of immunized mice were measured and found to be 1:1418 for those immunized with tag-free RBD and only 1:2.4 for His-tag RBD. Two weeks after the booster dose, tag-free-RBD-immunized mice demonstrated a significantly higher neutralizing titer of 1:369 compared with 1:7.9 for His-tag-RBD-immunized mice. Furthermore, neutralizing antibodies induced by tag-free RBD persisted for up to 5 months and demonstrated greater cross-neutralization of the SARS-CoV-2 Delta variant. Evidence from Western blotting showed that the serum of His-tag-RBD-immunized mice recognized irrelevant His-tag proteins. Collectively, we conclude that the addition of a polyhistidine tag on a recombinant protein, when used as a COVID-19 vaccine antigen, may significantly impair protein immunogenicity against SARS-CoV-2. Antibody responses induced were clearly more rapid and robust for the tag-free SARS-CoV-2 RBD than the His-tag SARS-CoV-2 RBD. These findings provide important information for the design of antigens used in the development of COVID-19 subunit vaccines.

5.
J Pers Med ; 12(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2033039

RESUMEN

Angiotensin converting enzyme 2 (ACE2) is an endogenous negative regulator of the renin-angiotensin system, a key factor in the development of cardiovascular disease (CVD). ACE2 is also used by SARS-CoV-2 for host cell entry. Given that COVID-19 is associated with hypercoagulability, it is timely to explore the potential relationship between plasma ACE2 activity and the coagulation profile. In this cross-sectional study, ACE2 activity and global coagulation assays (GCA) including thromboelastography, thrombin, and fibrin generation were measured in adult healthy controls (n = 123; mean age 41 ± 17 years; 35% male) and in patients with cardiovascular risk factors and/or disease (n = 258; mean age 65 ± 14 years; 55% male). ACE2 activity was significantly lower in controls compared to patients with cardiovascular risk factors and/or disease (median 0.10 (0.02, 3.33) vs. 5.99 (1.95, 10.37) pmol/mL/min, p < 0.001). Of the healthy controls, 48% had undetectable ACE2 activity. Controls with detectable ACE2 had lower maximum amplitude (p < 0.001). In patients with cardiovascular risk factors and/or disease, those in the 3rd tertile were older and male (p = 0.002), with a higher Framingham grade and increased number of cardiovascular risk factors (p < 0.001). In conclusion, plasma ACE2 activity is undetectable to very low in young healthy controls with minimal clinically relevant associations to GCA. Patients with cardiovascular risk factors and/or disease have increased plasma ACE2 activity, suggesting that it may be an important biomarker of endothelial dysfunction and atherosclerosis.

6.
MedComm (2020) ; 3(3): e151, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-2013677

RESUMEN

The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in ß-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.

7.
MedComm ; 3(3), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1940024

RESUMEN

The main proteases (Mpro), also termed 3‐chymotrypsin‐like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β‐coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus‐caused infectious diseases, including COVID‐19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS‐CoV‐2 3CLpro inhibitors. To better understand the characteristics of SARS‐CoV‐2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti‐coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS‐CoV‐2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti‐coronavirus agents. A comprehensive summary of recent advances in SARS‐CoV‐2 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives), including the inhibitory activities, inhibitory mechanisms, and key structural features, provides new insights for designing and developing more efficacious 3CLpro inhibitors as broad‐spectrum anti‐coronavirus agents.

8.
Vaccines (Basel) ; 10(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1792356

RESUMEN

As the third year of the global COVID-19 pandemic, vaccination remains the most effective tool against infections and symptomatic illness. Comprehension regarding immunity to SARS-CoV-2 is limited, and the durability of immune responses after vaccination is currently not clear. In this study, we randomly collected 395 questionnaires to analyze the current state of COVID-19 vaccination. At the same time, the serum of 16 individuals who had received two doses of the COVID-19 vaccine were collected at different times before and after the booster vaccination. We analyzed the dynamic changes of SARS-CoV-2 S-specific binding antibodies in serum and immunological indicators. By collecting public opinion surveys and analyzing variational trends of SARS-CoV-2 S-specific binding antibodies and immune indicators after COVID-19 booster vaccination, we endeavored to demonstrate the concerns affecting people's booster vaccinations, as well as the frequency, timing, and necessity of COVID-19 booster vaccinations. The analysis of antibody results in 16 vaccinated volunteers showed that the antibody concentration decreased six months after the second dose and the protective effect of the virus was reduced. The third dose of COVID-19 vaccination is necessary to maintain the antibody concentration and the protective effect of the virus. The vaccination with the vaccine booster depends not only on the time interval but also on the initial concentration of the SARS-CoV-2 S-specific binding antibody before the booster. Our study has important implications for raising public awareness of vaccinating against SARS-CoV-2 and the necessity of COVID-19 booster vaccinations.

9.
Antioxidants (Basel) ; 11(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1639306

RESUMEN

The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid (MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter superoxide anion generation and elastase activity in cell-free systems. These results suggest that the anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils. In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC) activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability. Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly, MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for developing new therapeutics to treat ARDS.

10.
Hum Vaccin Immunother ; 17(3): 654-655, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: covidwho-801647

RESUMEN

A safe and effective vaccine candidate is urgently needed for the ongoing COVID-19 pandemic, caused by SARS-CoV-2. Here we report that recombinant SARS-CoV-2 RBD protein immunization in mice is able to elicit a strong antibody response and potent neutralizing capability as measured using live or pseudotyped SARS-CoV-2 neutralization assays.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Unión Proteica/inmunología , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Pandemias/prevención & control , Proteínas Recombinantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
BMC Infect Dis ; 20(1): 549, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: covidwho-684717

RESUMEN

BACKGROUND: We aimed to report the epidemiological and clinical characteristics of hospitalized patients with coronavirus disease-19 (COVID-19) in Zengdu District, Hubei Province, China. METHODS: Clinical data on COVID-19 inpatients in Zengdu Hospital from January 27 to March 11, 2020 were collected; this is a community hospital in an area surrounding Wuhan and supported by volunteer doctors. All hospitalized patients with COVID-19 were included in this study. The epidemiological findings, clinical features, laboratory findings, radiologic manifestations, and clinical outcomes of these patients were analyzed. The patients were followed up for clinical outcomes until March 22, 2020. Severe COVID-19 cases include severe and critical cases diagnosed according to the seventh edition of China's COVID-19 diagnostic guidelines. Severe and critical COVID-19 cases were diagnosed according to the seventh edition of China's COVID-19 diagnostic guidelines. RESULTS: All hospitalized COVID-19 patients, 276 (median age: 51.0 years), were enrolled, including 262 non-severe and 14 severe patients. The proportion of patients aged over 60 years was higher in the severe group (78.6%) than in the non-severe group (18.7%, p < 0.01). Approximately a quarter of the patients (24.6%) had at least one comorbidity, such as hypertension, diabetes, or cancer, and the proportion of patients with comorbidities was higher in the severe group (85.7%) than in the non-severe group (21.4%, p < 0.01). Common symptoms included fever (82.2% [227/276]) and cough (78.0% [218/276]). 38.4% (106/276) of the patients had a fever at the time of admission. Most patients (94.9% [204/276]) were cured and discharged; 3.6% (10/276) deteriorated to a critical condition and were transferred to another hospital. The median COVID-19 treatment duration and hospital stay were 14.0 and 18.0 days, respectively. CONCLUSIONS: Most of the COVID-19 patients in Zengdu had mild disease. Older patients with underlying diseases were at a higher risk of progression to severe disease. The length of hospital-stay and antiviral treatment duration for COVID-19 were slightly longer than those in Wuhan. This work will contribute toward an understanding of COVID-19 characteristics in the areas around the core COVID-19 outbreak region and serve as a reference for decision-making for epidemic prevention and control in similar areas.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Tiempo de Internación/estadística & datos numéricos , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , Adolescente , Adulto , COVID-19 , Niño , Preescolar , China/epidemiología , Comorbilidad , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Tos/epidemiología , Femenino , Fiebre/epidemiología , Humanos , Hipertensión/epidemiología , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/diagnóstico , Estudios Retrospectivos , SARS-CoV-2 , Resultado del Tratamiento , Adulto Joven , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA